casa editrice la fiaccola

Live demonstration of the first autonomous vehicle powered by GalileoThe innovative postitioning GNSS engine - EGE - has been developed by the ESCAPE project

The University of Technology of Compiègne, France, on 27th November 2019 has hosted a live demonstration of the first autonomous vehicle powered by Galileo. As part of this demonstration, a Renault ZOE electric car has been autonomously driven on tracks and on public roads in a world first for the Galileo programme. Participants in the event had a unique opportunity to ride in an autonomous vehicle fitted with an innovative positioning engine developed by the ESCAPE project - the ESCAPE GNSS engine (EGE).

(descrizione)The EGE leverages Galileo signals and services to provide a core positioning component in autonomous vehicles. It was designed and prototyped by the ESCAPE project, funded under the European GNSS Agency’s (GSA) Fundamental Elements programme. GSA and European Commission representatives, the French and Spanish national authorities and the automobile industry took part in the demonstration of the Galileo - enabled autonomous vehicle. “GNSS is a key enabling technology towards fully Connected and Automated Driving. What we are witnessing today with the demonstration of the ESCAPE GNSS engine, which leverages Galileo’s multi-frequency and multi-constellation capability, is actually a glimpse of what ‘driving’ will look like in the near future, and is a key milestone bringing us ever closer to full automation,” GSA Executive Director Carlo des Dorides said.

The ESCAPE prototype

The EGE prototype design includes several major components, including a novel multi-frequency, multi-constellation automotive-grade GNSS receiver. The main distinguishing feature of the ESCAPE receiver is its ability to precisely and simultaneously process signals from two different GNSS bands and from different satellite constellations. Although this capability is common in high-end professional receivers, it is cutting-edge in the automotive Tier-2 panorama.

The receiver is also a first-of-a-kind device in its segment to support the new Navigation Message Authentication (NMA) service of Galileo - the open E1 signal. Finally, the new GNSS receiver comes with several core signal-processing enhancements: better receiver sensitivity and tracking capability, multipath mitigation, more intermediate frequency (IF) channels and flexibility in routing IF samples, jamming detection and mitigation, and optimisation of the GNSS data flow.

The result is an ESCAPE GNSS sensor that combines a high-end GNSS technology traditionally reserved for professional applications, innovative dual-band Galileo processing, as well as all the hardware and software safety aspects that are needed to certify the component for the automotive market.